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Sample Midterm

Problem 1

Background

Consider the simple linear regression model:

yi = β1xi + εi for i = 1, . . . , n

where the intercept is set to zero. We are tasked with deriving the least squares estimator of β1.

The least squares method minimizes the sum of squared errors (SSE), given by:

S(β1) =
n∑

i=1

ε2i =
n∑

i=1

(yi − β1xi)
2

The error (or residual) for each observation is:

εi = yi − β1xi

Solution

To find the estimator β̂1, we minimize S(β1) with respect to β1. First, expand the SSE:

S(β1) =
n∑

i=1

(y2i − 2yiβ1xi + β2
1x

2
i )

Now, differentiate S(β1) with respect to β1:

dS(β1)

dβ1

=
n∑

i=1

(−2yixi + 2β1x
2
i )

Set the derivative equal to zero to find the minimum:

0 =
n∑

i=1

(−2yixi + 2β1x
2
i )

Simplify:

0 = −2
n∑

i=1

yixi + 2β1

n∑
i=1

x2
i

n∑
i=1

yixi = β1

n∑
i=1

x2
i

Solving for β1 gives:

β1 =

∑n
i=1 yixi∑n
i=1 x

2
i

Thus, the least squares estimator for β1 without an intercept is:

β̂1 =

∑n
i=1 yixi∑n
i=1 x

2
i
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Problem 2

Part A

First, we calculate calculate β̂1 (the slope):

β̂1 = r

(
Sy

Sx

)
= 0.21× 0.91

0.50
= 0.3822

Where r is the correlation, Sy is the standard deviation of Y , and Sx is the standard deviation of X.

Now, we calculate β̂0 (the intercept):

β̂0 = Ȳ − β̂1X̄

= −0.04− (0.3822× 0.50) = −0.2311

Where Ȳ is the mean of Y and X̄ is the mean of X.

For the standard deviations, we need to calculate:

SE(β̂1) =

√
1− r2

n− 2
× Sy

Sx

SE(β̂0) = SE(β̂1)×
√∑

x2

n

And so:

SE(β̂1) =

√
1− r2

n− 2
× Sy

Sx

=

√
1− 0.212

100− 2
× 0.91

0.50
= 0.1796

For SE(β̂0), we approximate
∑

x2 using the variance:

V ar(X) =

∑
(x− x̄)2

n
= SD2 = 0.502 = 0.25∑

(x− x̄)2 = n× V ar(X) = 100× 0.25 = 25∑
x2 =

∑
(x− x̄)2 + nx̄2 = 25 + 100× 0.502 = 50

And so:

SE(β̂0) = SE(β̂1)×
√∑

x2

n

= 0.1796×
√

50

100
= 0.1270

And we can fill in our least squares table as:

Estimate Standard Deviation

β̂0 -0.2311 0.1270

β̂1 0.3822 0.1796
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Now for ANOVA::

SSR = β̂2
1 ×

∑
(x− x̄)2 = 0.38222 × 25 = 3.6494

SSE = (n− 1)S2
y − SSR = 99× 0.912 − 3.6494 = 78.2506

SST = SSR + SSE = 3.6494 + 78.2506 = 81.9000

And so we can fill in our ANOVA table as:

Sum of squares d.f. Mean squares

Regression 3.6494 1 3.6494
Sum of squares of residuals 78.2506 98 0.7985
Total 81.9000 99

Part B

For the two groups:

Group 1 (X = 0): n1 = 50, Ȳ1 = −0.04− 0.3822× 0 = −0.04

Group 2 (X = 1): n2 = 50, Ȳ2 = −0.04 + 0.3822× 1 = 0.3422

The pooled standard deviation is:

s2p =
SSE

n− 2
=

78.2506

98
= 0.7985

And the t-statistic is:

t =
Ȳ2 − Ȳ1

sp

√
2
n

=
0.3422− (−0.04)
√
0.7985×

√
2

100

=
0.3822

0.8936× 0.1414

= 3.0233

Finally, the degrees of freedom for this test is n− 2 = 98.

This t-statistic can be used to test the null hypothesis H0 : µ0 = µ1 against the alternative hypothe-
sis HA : µ0 ̸= µ1.

Problem 3

Background

Consider the simple linear regression model:

yi = β0 + β1xi + εi (1)

Let zi = a+ bxi, and consider the transformed model:

yi = γ0 + γ1zi + δi (2)

3



Solution

We aim to show that:
ŷi = β̂0 + β̂1xi = γ̂0 + γ̂1zi

The least squares estimators for model (1) are:

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2

β̂0 = ȳ − β̂1x̄

Now we turn to model (2). Given zi = a+ bxi, we have:

zi − z̄ = b(xi − x̄)

since

z̄ =
1

n

n∑
i=1

zi =
1

n

n∑
i=1

(a+ bxi) = a+ bx̄

We now compute:

Szz =
n∑

i=1

(zi − z̄)2 =
n∑

i=1

[b(xi − x̄)]2 = b2
n∑

i=1

(xi − x̄)2 = b2Sxx

Szy =
n∑

i=1

(zi − z̄)(yi − ȳ) =
n∑

i=1

[b(xi − x̄)](yi − ȳ) = b
n∑

i=1

(xi − x̄)(yi − ȳ) = bSxy

The least squares estimators for model (2) are:

γ̂1 =
Szy

Szz

=
bSxy

b2Sxx

=
β̂1

b

γ̂0 = ȳ − γ̂1z̄ = ȳ −

(
β̂1

b

)
(a+ bx̄) = ȳ − β̂1a

b
− β̂1x̄

= (ȳ − β̂1x̄)−
β̂1a

b
= β̂0 −

β̂1a

b

The predicted values from model (2) are:

ŷi = γ̂0 + γ̂1zi

=

(
β̂0 −

β̂1a

b

)
+

(
β̂1

b

)
(a+ bxi)

= β̂0 −
β̂1a

b
+

β̂1a

b
+ β̂1xi

= β̂0 + β̂1xi

Therefore, the predicted values from both models are identical for all xi and zi:

ŷi = β̂0 + β̂1xi = γ̂0 + γ̂1zi
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Problem 4

The p-value is defined as the probability of obtaining a test statistic at least as extreme as the observed
one, assuming the null hypothesis is true.

For a two-tailed t-test:
p-value = 2 · P(T > |t|)

where T follows a t-distribution and t is the observed t-statistic. We define P as the random variable
representing the p-value, and consider its CDF:

FP (x) = P(P ≤ x), for 0 ≤ x ≤ 1

Under the null hypothesis:
P = 2 · P(T > |t|)

Therefore:

FP (x) = P(2 · P(T > |t|) ≤ x)

= P(P(T > |t|) ≤ x/2)

= P(|t| ≥ T−1(1− x/2))

Where T−1 is the inverse of the t-distribution’s CDF.

Now, for a uniform distribution on [0, 1], the CDF should be F (x) = x for 0 ≤ x ≤ 1. Under the
null hypothesis, t follows a t-distribution. Therefore:

P(|t| ≥ T−1(1− x/2)) = 2 · (1− (1− x/2))

= x

This shows that FP (x) = x for 0 ≤ x ≤ 1, which is the CDF of a uniform distribution on [0, 1].

As an aside, this result is known as the probability integral transform and holds not just for t-tests,
but for all continuous test statistics under their null hypothesis.
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