
4243/5243: Applied Data Science

Lecture 02: Data Pre-Processing & Feature Engineering

Data Pre-Processing

Data Pre-Processing

• Data pre-processing and engineering
techniques generally refer to the addition,
deletion, or transformation of data.

• The time spent on identifying data
engineering needs can be significant and
requires you to spend substantial time
understanding your data.

Data Pre-Processing

• The need for data pre-processing is determined by the type of model being
used. Different models have different sensitivities to the type of predictors in
the model.

• For instance, some methods, such as tree-based models, are notably
insensitive to the characteristics of the predictor data. Other, like linear
regression, are not.

• In this class, a wide array of possible transformation techniques will be
discussed. We will also discuss which, if any, pre-processing techniques can be
useful.

Data Cleaning

Data Inconsistencies

• Inconsistent data can arise during data collection, integration, or entry, and
may lead to errors in analysis, misleading results, or failure of machine
learning models.

• Ensuring consistency in the dataset is a vital step in data preprocessing.

• Data inconsistency occurs when the same information is represented in
multiple ways or when relationships within the data do not align with
expected rules.

Data Inconsistencies

Formatting Issues:

• Dates represented in different formats (e.g., “2025 – 01 - 28”, “01/28/2025”).

• Currency values stored inconsistently (e.g., “$100”, “100 USD”).

• Text inconsistencies due to capitalization, spelling, or abbreviations (e.g.,
“New York”, “new York”, “NY”).

Data Inconsistencies

Categorical Data Issues:

• Different labels for the same category (e.g., “Male”, “M”).

• Categories with spelling errors or typos (e.g., “Fmale” instead of “Female”).

Data Inconsistencies

• Duplicate Records: same entity recorded multiple times with slight variations
(e.g., customer names: “A. Pijyan” and “Alex Pijyan”).

• Negative values for quantities that cannot be negative (e.g., age, weight).

• Numeric columns stored as strings (e.g., “100” stores as text).

• Mixed data types in a single column (e.g., text and numbers).

Resolving Data Inconsistencies

• Dates - use a consistent date format across the dataset (e.g., “MM-DD-YYYY”).
Tools: lubridate in R or pandas.to_datetime() in Python.

• Text – standardize capitalization and remove unnecessary whitespace.
Example: convert all text to lowercase (.str.lower() in Python or tolower() in
R).

• Map Values – replace inconsistent labels with standardized ones (e.g., map
“Male” to “M”). Tools: use fuzzywuzzy (Python) or stringdist (R) to handle
typos and close matches.

Resolving Data Inconsistencies

• Duplicate Records – use unique identifiers (e.g., customer ID) to identify
duplicates. Remove duplicates or merge records if necessary.

• Consistent data type – convert columns to appropriate data types.

Outliers & Influential Points

• Outliers are data points that deviate
significantly from the majority of the
dataset.

• They may be caused by errors, rare
events, or natural variability.

Outliers & Influential Points

• Outliers and influential points are critical concepts in data preprocessing and
feature engineering.

• They can significantly affect analysis results. For instance, outliers can skew
means, variances, and regression coefficients; many models are sensitive to
outliers; outliers may indicate rare events or errors that require special
attention.

• Thus, understating how to detect and handle them is essential.

Outliers & Influential Points

• An observation may be outlying or
extreme with respect to its 𝑌
[response] value, its 𝑋 [predictor(s)]
values(s), or both.

Outliers & Influential Points

• Not all outlying cases have a strong
influence on the fitted regression
function.

• For instance, Case 1 may not be too
influential because a number of
other cases have similar 𝑋 values
that will keep the fitted regression
function from being displaced too far
by the outlying case.

Outliers & Influential Points

• Case 2 may not be too influential
because its 𝑌 value is consistent with
the regression relation displayed by
the nonextreme cases.

• Cases 3 and 4, on the other hand, are
likely to be very influential in
affecting the fit of the regression
function: they are outlying with
regard to their 𝑋 values, and their 𝑌
values are not consistent with the
regression relation.

Outliers: Studentized Residuals

• The detection of outlying or extreme 𝑌 observations based on an
examination of the residuals. We utilized either the residual 𝑒𝑖

𝑒𝑖 = 𝑌𝑖 − ෠𝑌𝑖

or the studentized residuals 𝑒𝑖
∗:

𝑒𝑖
∗ =

𝑒𝑖

𝑀𝑆𝐸

Outliers: Studentized Residuals

• Recall, the hat matrix is defined as:

𝑯 = 𝑿(𝑿′𝑿)−𝟏𝑿′

• The fitted values ෠𝑌𝑖 can be expressed as:

෡𝒀 = 𝑯𝒀

• The residuals 𝑒𝑖 can be expressed as

𝒆 = 𝑰 − 𝑯 𝒀

Outliers: Studentized Residuals

• The variance-covariance of residuals can be expressed as

𝜎2 𝒆 = 𝜎2(𝑰 − 𝑯)

• Thus, the variance of residual 𝑒𝑖 is

𝜎2 𝑒𝑖 = 𝜎2(1 − ℎ𝑖𝑖)

• And the estimate
𝑠2 𝑒𝑖 = 𝑀𝑆𝐸(1 − ℎ𝑖𝑖)

Outliers: Studentized Residuals

• The test statistic for the studentized deleted residual test for detecting
outlying cases with respect to 𝑌 can be computed as

𝑡𝑖 = 𝑒𝑖
∗ 𝑛 − 𝑝 − 1

𝑆𝑆𝐸 1 − ℎ𝑖𝑖 − 𝑒𝑖
∗2

1/2

~ 𝑡(𝑛 − 𝑝 − 1)

• If the 𝑖-th observation has corresponding |𝑡𝑖| > 𝑡(1 −
𝛼

2𝑛
; 𝑛 − 𝑝 − 1), then

we identify this observation as an outlier with respect to 𝑌.

Outliers: Leverage Values

• As we saw, the hat matrix plays an important role in determining the
magnitude of the studentized deleted residual and therefore in identifying
outlying 𝑌 observations.

• The hat matrix is also helpful in directly identifying outlying 𝑋 observations.

• In particular, the diagonal elements of the hat matrix are a useful indicator
in a multivariable setting of whether a case is outlying with respect to its 𝑋
values.

Outliers: Leverage Values

• The diagonal elements ℎ𝑖𝑖 of the hat matrix are always between 0 and 1 and
their sum is 𝑝:

0 ≤ ℎ𝑖𝑖 ≤ 1 σ𝑖 =1
𝑛 ℎ𝑖𝑖 = 𝑝

• In addition, ℎ𝑖𝑖 is a measure of the distance between the 𝑋 values for the 𝑖th
case and the means of the 𝑋 values for all 𝑛 cases.

• Thus, a large value of ℎ𝑖𝑖 indicates that the 𝑖th case is distant from the
center of all 𝑋 observations.

Outliers: Leverage Values

• The diagonal element ℎ𝑖𝑖 in this
context is called the leverage of
the 𝑖th case.

• The figure on the right illustrates
the role of the leverage values
ℎ𝑖𝑖 as distance measures.

Outliers: Leverage Values

• A leverage value ℎ𝑖𝑖 is usually considered to be large if it is more than twice
as large as the mean leverage value, denoted by തℎ:

തℎ =
σ𝑖=1

𝑛 ℎ𝑖𝑖

𝑛
=

𝑝

𝑛

• Hence, leverage values greater than Τ2𝑝
𝑛 are considered by this rule to

indicate outlying cases with regard to their 𝑋 values.

• Another suggested guideline is that ℎ𝑖𝑖 values exceeding 0.5 indicate very
high leverage, whereas those between 0.2 and 0.5 indicate moderate
leverage.

Influential Values: DFFITS

• A useful measure of the influence that case 𝑖 has on the fitted value ෠𝑌𝑖 is
given by:

(𝐷𝐹𝐹𝐼𝑇𝑆)𝑖=
෠𝑌𝑖 − ෠𝑌𝑖(𝑖)

𝑀𝑆𝐸(𝑖)ℎ𝑖𝑖

• DF stands for the difference between the fitted value ෠𝑌𝑖 for the 𝑖 case when
all 𝑛 cases are used in fitting the regression function and the predicted value
෠𝑌𝑖(𝑖) for the 𝑖th case obtained when the 𝑖th case is omitted in fitting the
regression function.

• The denominator is the estimated standard deviation of ෠𝑌𝑖.

Influential Values: DFFITS

• It can be shown that the DFFITS values can be computed by using only the
results from fitting the entire data set:

(𝐷𝐹𝐹𝐼𝑇𝑆)𝑖= 𝑒𝑖

𝑛 − 𝑝 − 1

𝑆𝑆𝐸 1 − ℎ𝑖𝑖 − 𝑒𝑖
2

1/2
ℎ𝑖𝑖

1 − ℎ𝑖𝑖

ൗ1
2

= 𝑡𝑖

ℎ𝑖𝑖

1 − ℎ𝑖𝑖

ൗ1
2

• As a guideline for identifying influential cases, we suggest considering a case
influential if the absolute value of DFFITS exceeds 1 for small to medium data sets

and 2 Τ𝑝 𝑛 for large data sets.

Influential Values: Cook’s Distance

• In contrast to the DFFITS measure, Cook’s distance measure considers the
influence of 𝑖th case on all 𝑛 fitted values. Cook’s distance measure, denoted by
𝐷𝑖, is an aggregate influence measure, showing the effect on the 𝑖th case on all 𝑛
fitted values:

𝐷𝑖 =
σ𝑗=1

𝑛 (෠𝑌𝑗 − ෠𝑌𝑗(𝑖))2

𝑝𝑀𝑆𝐸

• For interpreting Cook’s distance measure, it has been found useful to relate 𝐷𝑖 to
the 𝐹(𝑝, 𝑛 − 𝑝) distribution and ascertain the corresponding percentile value. If
the percentile value is less than about 10 or 20 percent, the 𝑖th case has little
apparent influence on the fitted value; if it’s more than 50 percent, then it is
considered to be substantially influential.

Influential Values: Cook’s Distance

• Cook’s distance measure 𝐷𝑖 can be calculated without fitting a new
regression function each time a different case is deleted. An algebraically
equivalent expression is:

𝐷𝑖 =
𝑒𝑖

2

𝑝𝑀𝑆𝐸

ℎ𝑖𝑖

(1 − ℎ𝑖𝑖)2

• Thus, 𝐷𝑖 depends mainly on two factors: the size of the residual 𝑒𝑖 and the
leverage value ℎ𝑖𝑖.

• The larger either of 𝑒𝑖 or ℎ𝑖𝑖 is, the larger 𝐷𝑖 is.

Outliers: Remedial Measures

• Do Nothing: if the outliers represent meaningful phenomena, retain
them.

• Winsorization: Replace extreme values with a threshold (e.g. 95th
percentile).

• Transformation: Apply log, square root, or power transformation ro
reduce the impact.

Outliers: Remedial Measures

• Capping: Set upper and lower limits for the values.

• Removal: Exclude the outliers, especially if they result from errors.

• Segmentation: Analyze outliers separately if they represent a distinct
group.

Missing Values

• Data quality is an important issue for any project involving analyzing data.
One of the most common data quality concerns you will run into is missing
values.

• Data can be missing for various reasons; as a starting point, it is useful to
understand different missing data patterns, which refer to the configuration
of observed and missing values in a data set.

Missing Data Patterns: Univariate

• A univariate pattern has missing values
isolated to a single variable.

• A univariate pattern is relatively rare in
some disciplines but can arise in
experimental studies.

• For instance, suppose that 𝑌1 through 𝑌3
are manipulated variables (e.g., between
subjects' factors in an ANOVA design) and
𝑌4 is the incomplete outcome variable.

Missing Data Patterns: Unit Nonresponse

• A unit nonresponse pattern often occurs
in survey research, where 𝑌1 and 𝑌2 are
characteristics available for every member
of the sampling frame, and 𝑌3 and 𝑌4 are
surveys that some respondents refuse to
answer.

Missing Data Patterns: Monotone Missing

• A monotone missing data pattern is
typically associated with a longitudinal
study where participants drop out and
never return.

• For example, consider a clinical trial for
a new medication in which participants
quit the study because they are having
adverse reactions to the drug.

Missing Data Patterns: General

• A general missing data pattern is perhaps
the most common configuration of
missing values.

• A general pattern has missing values
dispersed throughout the data matrix in a
random fashion.

• The seemingly random pattern is
deceptive because the values can still be
systematically missing.

Missing Data Mechanisms

• Missing values can also be described using missing data mechanisms.

• Missing data mechanisms describe possible relationships between measured
variables and the probability of missing data.

• There are three commonly used missing data mechanisms that we are going
to consider: Missing at Random (MAR), Missing Completely at Random
(MCAR), and Missing Not at Random (MNAR).

Missing at Random (MAR)

• Data is missing at random (MAR) when the probability of missing data on a
variable 𝑌 is related to some other measured variable(s) in the model but not
to the values of 𝑌 itself.

• The term missing at random is somewhat misleading because it implies that
the data is missing in a random fashion.

• However, MAR actually means that a systematic relationship exists between
one or more measured variables and the probability of missing data.

Missing at Random (MAR)

• To illustrate, consider an employee selection scenario in which prospective
employees complete an IQ test during their job interview and a supervisor
subsequently evaluates their job performance following a 6-month
probationary period.

• Suppose that the company used IQ scores as a selection measure and did not
hire applicants that scored in the lower quartile of the IQ distribution.

• Thus, the probability of a missing job performance rating is solely a function of
IQ scores and is unrelated to an individual’s job performance.

Missing at Random (MAR)

Missing Completely at Random (MCAR)

• The missing completely at random (MCAR) mechanism is what researchers
think of as purely random missingness.

• The formal definition of MCAR requires that the probability of missing data on
a variable 𝑌 is unrelated to other measured variables and is unrelated to the
values of 𝑌 itself.

• With regard to the job performance data, you can create the MCAR data by
deleting scores based on the values of a random number.

Missing Not at Random (MNAR)

• Finally, data is missing not at random (MNAR) when the probability of missing
data on a variable 𝑌 is related to the values of 𝑌 itself, even after controlling
for other variables.

• For instance, suppose the company hired all 20 applicants and subsequently
terminated a number of individuals for poor performance prior to their 6-
month evaluation.

• You can see that the job performance ratings are missing for the applicants
with the lowest job performance ratings.

Dealing with Missingness: Imputation

• Imputation is the process of replacing a missing value with a substituted,
“Best Guess” value.

• Imputation should be one of the first feature engineering steps you take as it
will affect any downstream pre-processing.

• In this class we will consider two imputation techniques: estimated statistic
and 𝑲- nearest neighbor.

Imputation: Estimated Statistic

• An elementary approach to imputing missing values for a feature is to
compute descriptive statistics such as mean, median, or mode (for
categorical features) and use that value to replace 𝑵𝑨s (missing values).

• Although computationally efficient, this approach does not consider any other
attributes for a given observation when imputing.

• For instance, a female patient that is 63 inches tall may have her weight
imputed as 182lbs since that is the average weight across all observations
which contains 65% males that average a height of 70 inches.

Imputation: Estimated Statistic
Observation Sex Weight

Obs. 1 Male 199

Obs. 2 Female 175

Obs. 3 Male 205

Obs. 4 Male 188

Obs. 5 Female 164

Obs. 6 Male 192

Obs. 7 Female NA

Obs. 8 Female 158

Obs. 9 Male 195

Obs. 10 Male 203

Obs. 11 Female 179

199+175+205+188+164+192+158+195+203+179

10
 =

 185.8

Imputation: Estimated Statistic
Observation Sex Weight

Obs. 1 Male 199

Obs. 2 Female 175

Obs. 3 Male 205

Obs. 4 Male 188

Obs. 5 Female 164

Obs. 6 Male 192

Obs. 7 Female NA

Obs. 8 Female 158

Obs. 9 Male 195

Obs. 10 Male 203

Obs. 11 Female 179

175 + 164 + 158 + 179

4
 = 169

An alternative is to use grouped statistics to
capture expected values for observations that fall
into similar groups.

Imputation: 𝐾-nearest Neighbor

• 𝑲-nearest neighbor (KNN) imputes values by identifying observations with
missing values, then identifying other observations that are most similar
based on the other available features and using the values from these nearest
neighbor observations to impute missing values.

• In KNN imputation, the missing value for a given observation is treated as the
targeted response and is predicted based on the average (for quantitative
values) or the mode (for qualitative values) of the 𝑘 nearest neighbors.

Measures of Similarity and Dissimilarity

• The similarity between two objects is
a numerical measure of the degree to
which the two objects are alike.

• Consequently, similarities are higher
for pairs of objects that more alike.

• Similarities are usually non-negative
and are often between 0 (no
similarity) and 1 (complete similarity).

• The dissimilarity between two
objects is a numerical measure of the
degree to which the two objects are
different.

• Dissimilarities are lower for more
similar pairs of objects.

• Frequently, the term distance is used
as synonym for dissimilarity.

• Dissimilarities range from 0 to ∞.

Measures of Dissimilarity between Data Objects

• The Euclidean distance, 𝑑, between two points (observations), 𝒙 and 𝒚, in
one-, two-, or higher-dimensional space, is given by the following formula:

𝒅 𝒙, 𝒚 = ෍

𝒌=𝟏

𝒏

(𝒙𝒌 − 𝒚𝒌)𝟐

where 𝑛 is the number of dimensions (# of features) and 𝑥𝑘 and 𝑦𝑘 are,
respectively, the 𝑘-th attributes (features) of 𝒙 and 𝒚.

Measures of Dissimilarity between Data Objects

• The Euclidean distance can be generalized by the Minkowski distance metric
that is given by

𝒅 𝒙, 𝒚 = ෍

𝒌=𝟏

𝒏

|𝒙𝒌 − 𝒚𝒌|𝒓

𝟏/𝒓

where 𝑟 is a parameter.

• When 𝑟 = 1, it’s called a City block (Manhattan) distance.

• When 𝑟 = 2, we get Euclidean distance.

Measures of Dissimilarity between Data Objects: Example

Point X coordinate Y coordinate

P1 0 2

P2 2 0

P3 3 1

P4 5 1

Euclidean Distance: Example

Point X coordinate Y coordinate

P1 0 2

P2 2 0

P3 3 1

P4 5 1

Euclidean Distance Matrix

P1 P2 P3 P4

P1 0 2.8 3.2 5.1

P2 2.8 0 1.4 3.2

P3 3.2 1.4 0 2.0

P4 5.1 3.2 2.0 0

𝑑 𝑃1, 𝑃3 = (0 − 3)2+ (2 − 1)2= 3.2

Manhattan Distance: Example

Point X coordinate Y coordinate

P1 0 2

P2 2 0

P3 3 1

P4 5 1

Manhattan Distance Matrix

P1 P2 P3 P4

P1 0 4 4 6

P2 4 0 2 4

P3 4 2 0 2

P4 6 4 2 0

𝑑 𝑃1, 𝑃3 = 0 − 3 + |2 − 1| = 4

Similarity Measures for Binary Data

• Similarity measures between two objects that contain only binary features
(yes/no or 1/0) are called similarity coefficients, and typically have values
between 0 and 1.

• A value of 1 indicates that the two objects are completely similar, while a
value of 0 indicates that the objects are not similar at all.

Similarity Measures for Binary Data

Let 𝒙 and 𝒚 be two objects that consist of 𝑛 binary features. The comparison of
two such objects, that is, two binary vectors, leads to the following quantities
(frequencies):

• 𝑓00 is the number of features where 𝑥 = 0 and 𝑦 = 0

• 𝑓01 is the number of features where 𝑥 = 0 and 𝑦 = 1

• 𝑓10 is the number of features where 𝑥 = 1 and 𝑦 = 0

• 𝑓11 is the number of features where 𝑥 = 1 and 𝑦 = 1

Simple Matching Coefficient (SMC)

• One commonly used similarity coefficient is the Simple Matching Coefficient
(SMC), which is defined as

𝑺𝑴𝑪 =
𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒎𝒂𝒕𝒄𝒉𝒊𝒏𝒈 𝒇𝒆𝒂𝒕𝒖𝒓𝒆 𝒗𝒂𝒍𝒖𝒆𝒔

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔
=

𝒇𝟎𝟎 + 𝒇𝟏𝟏

𝒇𝟎𝟎 + 𝒇𝟏𝟎 + 𝒇𝟎𝟏 + 𝒇𝟏𝟏

• SMC counts both presences and absences equally.

Jaccard Coefficient

• The Jaccard coefficient, which is often symbolized by 𝐽, is given by

𝑱 =
𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒎𝒂𝒕𝒄𝒉𝒊𝒏𝒈 𝒑𝒓𝒆𝒔𝒆𝒏𝒄𝒆𝒔

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔 𝒏𝒐𝒕 𝒊𝒏𝒗𝒐𝒍𝒗𝒆𝒅 𝒊𝒏 𝟎𝟎 𝒎𝒂𝒕𝒄𝒉𝒆𝒔
=

𝒇𝟏𝟏

𝒇𝟏𝟎 + 𝒇𝟎𝟏 + 𝒇𝟏𝟏

• The Jaccard similarity coefficient is used when the primary goal is to assess
the similarity between objects based on 11 matches.

Jaccard Coefficient and SMC: Example

• To illustrate the difference between these two similarity measures, we
calculate 𝑆𝑀𝐶 and 𝐽 for the following two binary vectors:

𝒙 = 𝟏, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎
𝒚 = 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟏, 𝟎, 𝟎, 𝟏

• 𝑓00 = 7, is the number of features where 𝑥 = 0 and 𝑦 = 0

• 𝑓01 = 2, is the number of features where 𝑥 = 0 and 𝑦 = 1

• 𝑓10 = 1, is the number of features where 𝑥 = 1 and 𝑦 = 0

• 𝑓11 = 0, is the number of features where 𝑥 = 1 and 𝑦 = 1

Jaccard Coefficient and SMC: Example

𝒙 = 𝟏, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎
𝒚 = 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟏, 𝟎, 𝟎, 𝟏

• 𝑺𝑴𝑪 = =
𝒇𝟎𝟎+𝒇𝟏𝟏

𝒇𝟎𝟎+𝒇𝟏𝟎+𝒇𝟎𝟏+𝒇𝟏𝟏
=

𝟕+𝟎

𝟕+𝟏+𝟐+𝟎
= 𝟎. 𝟕

• 𝑱 = =
𝒇𝟏𝟏

𝒇𝟏𝟎+𝒇𝟎𝟏+𝒇𝟏𝟏
=

𝟎

𝟏+𝟐+𝟎
= 𝟎

Cosine Similarity

• Documents are often represented as vectors, where each feature represents
the frequency with which a particular term (word) occurs in the document.

• Even though documents have thousands or tens of thousands of features
(terms), each document is sparse since it has relatively few non-zero features.

• Therefore, a similarity measure for documents need to ignore 00 matches like
the Jaccard measure, but also be able to handle non-binary vectors.

Cosine Similarity

• The cosine similarity is one of the most common measure of document
similarity. If 𝒙 and 𝒚 are two document vectors, then

𝐜𝐨𝐬 𝒙, 𝒚 =
𝒙 ∙ 𝒚

𝒙 𝒚

where 𝒙 ∙ 𝒚 = σ𝒌=𝟏
𝒏 𝒙𝒌𝒚𝒌, and 𝒙 = σ𝒌=𝟏

𝒏 𝒙𝒌
𝟐

Cosine Similarity: Example

• This example calculates the cosine similarity for the following two data
objects, which might represent document vectors:

𝑥 = (3, 2, 0,5,0,0,0,2,0,0)
𝑦 = (1, 0, 0,0,0,0,0,1,0,2)

𝒙 ∙ 𝒚 = 𝟑 ∗ 𝟏 + 𝟐 ∗ 𝟎 + 𝟎 ∗ 𝟎 + 𝟓 ∗ 𝟎 + 𝟎 ∗ 𝟎 + 𝟎 ∗ 𝟎 + 𝟎 ∗ 𝟎 + 𝟐 ∗ 𝟏 + 𝟎 ∗ 𝟎 + 𝟎 ∗ 𝟐 = 𝟓

𝒙 = 𝟑 ∗ 𝟑 + 𝟐 ∗ 𝟐 + 𝟎 ∗ 𝟎 + 𝟓 ∗ 𝟓 + 𝟎 ∗ 𝟎 + 𝟎 ∗ 𝟎 + 𝟎 ∗ 𝟎 + 𝟐 ∗ 𝟐 + 𝟎 ∗ 𝟎 + 𝟎 ∗ 𝟎 = 𝟔. 𝟒𝟖

𝒚 = 𝟏 ∗ 𝟏 + 𝟎 ∗ 𝟎 + 𝟎 ∗ 𝟎 + 𝟎 ∗ 𝟎 + 𝟎 ∗ 𝟎 + 𝟎 ∗ 𝟎 + 𝟎 ∗ 𝟎 + 𝟏 ∗ 𝟏 + 𝟎 ∗ 𝟎 + 𝟐 ∗ 𝟐 = 𝟐. 𝟐𝟒

Cosine Similarity: Example

𝐜𝐨𝐬 𝒙, 𝒚 =
𝒙 ∙ 𝒚

𝒙 𝒚
=

𝟓

𝟔. 𝟒𝟖 ∗ 𝟐. 𝟐𝟒
= 𝟎. 𝟑𝟏

• Cosine similarity really is a measure of the (cosine of the) angle between 𝑥
and 𝑦.

• Thus, the cosine similarity is 1, then 𝑥 and 𝑦 are the same except for
magnitude (length).

• And if the cosine similarity is 0, then 𝑥 and 𝑦 don’t share any terms (words).

Which measure to choose?

• For many types of dense, continuous data, metric distance measures such as
Euclidean distance are often used.

• Proximity (similarity or dissimilarity) between continuous features is most
often expressed in terms of differences, and distance measures provide a well-
defined way of combining these differences into an overall proximity measure.

• For sparse data, we typically employ similarity measures that ignore 00
matches. Thus, Jaccard measure is more appropriate for such data.

Imputation Example: Ames Data

• Figures below illustrate the difference between mean and KNN imputations.
It is apparent how descriptive statistic method is inferior to the KNN method.

Numeric Feature Engineering

• Numeric features can create a host of problems for certain models when their
distributions are skewed, contain outliers, or have a wide range in
magnitudes.

• For instance, tree-based model are quite immune to these types of problems
in the feature space, but many other models (e.g., GLMs, regularized
regression, KNN, support vector machine) can be greatly hampered by these
issues.

• Some feature engineering techniques that we are going to discuss today can
help minimize these concerns.

Numeric Feature Engineering

• Although not always a requirement, transforming the response (target)
variable can lead to predictive improvement, especially with parametric
models.

• For instance, ordinary linear regression models assume that the error terms
(and hence the response) are normally distributed.

• A small violation of this condition is fine, except when the target feature has
heavy tails (i.e., outliers) or is skewed in one direction or the other.

Numeric Feature Engineering

• For example, the response variable
(Sale Price) for homes is right
(positively) skewed.

• Its values range from $12,789 to
$755,000.

• Question: what are the approaches
to help correct for positively skewed
target variables?

Target Feature Engineering: Log Transformation

• Option 1: Use a Log transformation.

• A simple log transformation will help
fix the issue with a right-skewed target
feature and make its distribution look
more “normal”.

• The figure to the right illustrates
results of log transformation applied
to the Sale Price variable.

Target Feature Engineering: Log Transformation

Target Feature Engineering: Log Transformation

• If you apply the log transformation to a symmetric distribution, it will tend to
make it left-skewed for the same reason it often makes a right-skewed
distribution more symmetric and normal.

• If your response has negative values or zeros, then a log transformation will
produce Na’s and –INF’s, respectively (you cannot take the logarithm of a
negative number).

• If the nonpositive values are small (say between -0.99 and 0), then you can
apply a small offset, which adds 1 to the value prior to applying a log
transformation.

Target Feature Engineering: Log Transformation

• Finally, if you apply the log transformation to something that is already left-
skewed, it will tend to make it even more left-skewed. Thus, it wouldn’t be
helpful.

• In such cases power transformation might be more suitable and useful
(discussed next).

Target Feature Engineering: Box-Cox Transformation

• Option 2: Use a Box-Cox transformation.

• A Box-Cox transformation is more flexible than (but also includes ad a special
case) the log transformation and will find an appropriate transformation from
a family of power transforms that will transform the variable as close as
possible to a normal distribution.

• At the core of the Box-Cox transformation is an exponent, lambda (𝝀). All
values of 𝜆 are considered and the optimal value for the given data is being
estimated.

Target Feature Engineering: Box-Cox Transformation

• The transformation of the response 𝑌 has the following form:

𝒀 𝝀 = ൞
𝒀𝝀 − 𝟏

𝝀
, 𝒊𝒇 𝝀 ≠ 𝟎

𝐥𝐨𝐠 𝒀 , 𝒊𝒇 𝝀 = 𝟎

• The optimal value of 𝝀 is the one which results in the best transformation to
an approximate normal distribution and can be estimate using resampling
techniques (for example, cross validation).

Target Feature Engineering: Box-Cox Transformation

Common Box-Cox Transformations

Lambda Value (𝜆) ~ Transformed data (𝒀 𝝀)

-3 𝑌−3 = ൗ1
𝑌3

-2 𝑌−2 = ൗ1
𝑌2

-1 𝑌−1 = ൗ1
𝑌

-0.5 𝑌−0.5 = ൗ1
𝑌

0 Log(Y)

0.5 𝑌0.5 = 𝑌

1 𝑌1 = 𝑌

2 𝑌2

3 𝑌3

Target Feature Engineering: Box-Cox Transformation

Target Feature Engineering: Yeo-Johnson Transformation

• It is important to note that the Box-Cox transformation procedure can only be
applied to data that is strictly positive. To address this problem, Yeo and
Johnson devised an analogous procedure that can be used on any numeric
data:

𝒀 𝝀 =

(𝒀 + 𝟏 𝝀 − 𝟏)

𝝀
 𝒊𝒇 𝝀 ≠ 𝟎, 𝒀 ≥ 𝟎

𝐥𝐧 𝒀 + 𝟏 𝒊𝒇 𝝀 = 𝟎, 𝒀 ≥ 𝟎

−(−𝒀 + 𝟏 (𝟐−𝝀) − 𝟏)

(𝟐 − 𝝀)
 𝒊𝒇𝝀 ≠ 𝟐, 𝒀 < 𝟎

−𝒍𝒏 −𝒀 + 𝟏 𝒊𝒇𝝀 = 𝟐, 𝒀 < 𝟎

Numeric Feature Engineering: Feature Scaling

• Feature scaling is a critical step in building accurate and effective ML models.
It can help to improve the model performance, reduce the impact of outliers,
and ensure that the data is on the same scale.

• Feature scaling transforms the values of features (predictors) in a dataset to a
similar scale. It ensures that all features contribute equally to the model and
avoids the domination of features with larger values.

• Two commonly feature scaling techniques are normalization and
standardization.

Normalization

• Normalization is a data pre-processing technique employed to bring the
values of features in a dataset to a common scale.

• It is a scaling technique in which values are shifted and rescaled so that they
end up ranging between 0 and 1, [0,1]. It is also known as Min-Max Scaling:

𝑿′ =
𝑿 − 𝑿𝒎𝒊𝒏

𝑿𝒎𝒂𝒙 − 𝑿𝒎𝒊𝒏

Standardization

• Standardization is another feature scaling method where the values are
centered around the mean with a unit standard deviation.

• This means that the mean of the feature becomes zero, and the resultant
distribution has a unit standard deviation:

𝑋′ =
𝑋 − 𝜇

𝜎

Categorical Feature Engineering

• Categorical (Nominal) predictors are those that contain qualitative data, that
is, data that has no numeric scale. Categorical features can take a variety of
forms in the data.

• With the exception of tree-based models, categorical predictors must be first
converted into numeric representations so that to ML models can compute.

• One of the most common ways of converting categorical features into numeric
ones is called one-hot encoding. It transposes our categorical features so that
each level of the feature is represented as a Boolean value.

Categorical Feature Engineering: One-Hot Encoding

ID X

1 A

2 C

3 A

4 B

5 A

6 C

7 C

8 B

ID X = a X = b X = c

1 1 0 0

2 0 0 1

3 1 0 0

4 0 1 0

5 1 0 0

6 0 0 1

7 0 0 1

8 0 1 0

One-Hot Encoding

Categorical Feature Engineering: Dummy Encoding

• One-hot encoding is called less than full rank encoding.

• Although one-hot encoding method is easy to implement and is
straightforward to interpret, it creates perfect collinearity which causes
problems with some predictive modeling algorithms (e.g., ordinary linear
regression).

• An alternative approach is to create a full-rank encoding by dropping one of
the levels. This is referred to as dummy (indicator) encoding.

Categorical Feature Engineering: Dummy Encoding

ID X

1 A

2 C

3 A

4 B

5 A

6 C

7 C

8 B

ID X = a X = b

1 1 0

2 0 0

3 1 0

4 0 1

5 1 0

6 0 0

7 0 0

8 0 1

One-Hot Encoding

Categorical Feature Engineering: Rare Categories

• Sometimes features will contain levels
that have very few observations.

Neighborhood Frequency

Landmark 1

Green Hills 2

Greens 7

Blueste 9

Northpark Villa 17

Briardale 18

…… ……

Categorical Feature Engineering: Zero-Variance Predictors

• One potential issue is that resampling might exclude some of the rarer
categories (levels) from the training set.

• This would lean to dummy variable columns that contain all zeros, and, for
many models, this would become a numerical issue that will cause an error.

• When a predictor contains a single value, we call this a zero-variance
predictor because there truly is no variation displayed by the predictor.

Categorical Feature Engineering: Zero-Variance Predictors

• One way of handling this issue is to create the full set of dummy variables and
simply remove the zero-variance or near-zero-variance predictors.

• Another solution to this problem is collapsing, or “lumping” rare categories
into a lesser number of categories. In general, we may want to collapse all
levels that are observed in less than 10% of the dataset into an “Other”
category.

Multicollinearity

• In data analysis, the nature and significance of the relations between predictor
variables and the response variable are often of particular interest.

• When predictor variables are highly correlated among themselves,
multicollinearity is said to exist.

• A multicollinearity among predictor variables can create a variety of
interrelated problems.

Multicollinearity

• The fact that some or all predictor variables are correlated among themselves
does not, in general, inhibit out ability to obtain a good fit nor does it tend to
affect inferences about mean response or predictions of new observations.

• The main issue with multicollinearity is that the estimated model coefficients
tend to have large sampling variability (inflated variances).

• Thus, the estimated coefficients tend to vary widely from one sample to
another. As a result, inference made about the model coefficients will be
imprecise and biased.

Multicollinearity

• When multicollinearity exists, the common interpretation or model
coefficients, measuring the change in the expected value of the response
variable when a given predictor variable is increased by one unit while other
predictor variables are held constant, is not fully applicable.

• Additionally, interpretation of the model coefficients will not make sense
anymore, because there is an infinite number of estimates available, which
are equally good fit to the data.

• Thus, the effect size of predictors will widely depend on the sample data and
will vary from one sample to another.

Multicollinearity: Remedial Measures

• Solution 1: Delete some of the highly correlated predictors or combine them.

• Solution 2: Standardize predictors or apply other pre-processing procedures
(for instance, Principal Component Analysis).

• Solution 3: Ridge Regression.

	Slide 1: 4243/5243: Applied Data Science
	Slide 2: Data Pre-Processing
	Slide 3: Data Pre-Processing
	Slide 4: Data Pre-Processing
	Slide 5: Data Cleaning
	Slide 6: Data Inconsistencies
	Slide 7: Data Inconsistencies
	Slide 8: Data Inconsistencies
	Slide 9: Data Inconsistencies
	Slide 10: Resolving Data Inconsistencies
	Slide 11: Resolving Data Inconsistencies
	Slide 12: Outliers & Influential Points
	Slide 13: Outliers & Influential Points
	Slide 14: Outliers & Influential Points
	Slide 15: Outliers & Influential Points
	Slide 16: Outliers & Influential Points
	Slide 17: Outliers: Studentized Residuals
	Slide 18: Outliers: Studentized Residuals
	Slide 19: Outliers: Studentized Residuals
	Slide 20: Outliers: Studentized Residuals
	Slide 21: Outliers: Leverage Values
	Slide 22: Outliers: Leverage Values
	Slide 23: Outliers: Leverage Values
	Slide 24: Outliers: Leverage Values
	Slide 25: Influential Values: DFFITS
	Slide 26: Influential Values: DFFITS
	Slide 27: Influential Values: Cook’s Distance
	Slide 28: Influential Values: Cook’s Distance
	Slide 29: Outliers: Remedial Measures
	Slide 30: Outliers: Remedial Measures
	Slide 31: Missing Values
	Slide 32: Missing Data Patterns: Univariate
	Slide 33: Missing Data Patterns: Unit Nonresponse
	Slide 34: Missing Data Patterns: Monotone Missing
	Slide 35: Missing Data Patterns: General
	Slide 36: Missing Data Mechanisms
	Slide 37: Missing at Random (MAR)
	Slide 38: Missing at Random (MAR)
	Slide 39: Missing at Random (MAR)
	Slide 40: Missing Completely at Random (MCAR)
	Slide 41: Missing Not at Random (MNAR)
	Slide 42: Dealing with Missingness: Imputation
	Slide 43: Imputation: Estimated Statistic
	Slide 44: Imputation: Estimated Statistic
	Slide 45: Imputation: Estimated Statistic
	Slide 46: Imputation: cap K-nearest Neighbor
	Slide 47: Measures of Similarity and Dissimilarity
	Slide 48: Measures of Dissimilarity between Data Objects
	Slide 49: Measures of Dissimilarity between Data Objects
	Slide 50: Measures of Dissimilarity between Data Objects: Example
	Slide 51: Euclidean Distance: Example
	Slide 52: Manhattan Distance: Example
	Slide 53: Similarity Measures for Binary Data
	Slide 54: Similarity Measures for Binary Data
	Slide 55: Simple Matching Coefficient (SMC)
	Slide 56: Jaccard Coefficient
	Slide 57: Jaccard Coefficient and SMC: Example
	Slide 58: Jaccard Coefficient and SMC: Example
	Slide 59: Cosine Similarity
	Slide 60: Cosine Similarity
	Slide 61: Cosine Similarity: Example
	Slide 62: Cosine Similarity: Example
	Slide 63: Which measure to choose?
	Slide 64: Imputation Example: Ames Data
	Slide 65: Numeric Feature Engineering
	Slide 66: Numeric Feature Engineering
	Slide 67: Numeric Feature Engineering
	Slide 68: Target Feature Engineering: Log Transformation
	Slide 69: Target Feature Engineering: Log Transformation
	Slide 70: Target Feature Engineering: Log Transformation
	Slide 71: Target Feature Engineering: Log Transformation
	Slide 72: Target Feature Engineering: Box-Cox Transformation
	Slide 73: Target Feature Engineering: Box-Cox Transformation
	Slide 74: Target Feature Engineering: Box-Cox Transformation
	Slide 75: Target Feature Engineering: Box-Cox Transformation
	Slide 76: Target Feature Engineering: Yeo-Johnson Transformation
	Slide 77: Numeric Feature Engineering: Feature Scaling
	Slide 78: Normalization
	Slide 79: Standardization
	Slide 80: Categorical Feature Engineering
	Slide 81: Categorical Feature Engineering: One-Hot Encoding
	Slide 82: Categorical Feature Engineering: Dummy Encoding
	Slide 83: Categorical Feature Engineering: Dummy Encoding
	Slide 84: Categorical Feature Engineering: Rare Categories
	Slide 85: Categorical Feature Engineering: Zero-Variance Predictors
	Slide 86: Categorical Feature Engineering: Zero-Variance Predictors
	Slide 87: Multicollinearity
	Slide 88: Multicollinearity
	Slide 89: Multicollinearity
	Slide 90: Multicollinearity: Remedial Measures

